MTH 406 Midterm Solutions

1. (a) Show that a space curve γ is planar if, and only if, $\gamma^{\prime} \cdot\left(\gamma^{\prime \prime} \times \gamma^{\prime \prime \prime}\right)=0$.
(b) Show that the curve $\gamma(t)=(a \cos (t), a \sin (t), \sin (t)+\cos (t)+b)$, where $a, b \in \mathbb{R}$ is a plane curve.
Solution. (a) By Lesson Plan 1.5 (iv), we know that a curve is planar if, and only if, $\tau=0$. Since

$$
\tau=\frac{\left(\gamma^{\prime} \times \gamma^{\prime \prime}\right) \cdot \gamma^{\prime \prime \prime}}{\|\dot{\gamma} \times \ddot{\gamma}\|}
$$

it follows that

$$
\tau=0 \Longleftrightarrow\left(\gamma^{\prime} \times \gamma^{\prime \prime}\right) \cdot \gamma^{\prime \prime \prime}=0
$$

(b) This is left as an exercise, as it follows from a straightforward computation.
2. Consider the ellipse defined by

$$
\gamma(t)=(a \cos (t), b \sin (t)), t \in \mathbb{R} \text { and } a, b>0
$$

Where is the curvature of γ maximal and minimal?
Solution. We know from class that curvature is given by $\kappa(t)=$ $\left\|\gamma^{\prime \prime}(t)\right\|$. Since

$$
\gamma^{\prime}(t)=(a \cos (t),-b \sin (t)) \text { and } \gamma^{\prime \prime}(t)=(-a \sin (t),-b \cos (t)),
$$

we have $\kappa(t)=a^{2} \sin ^{2}(t)+b^{2} \cos ^{2}(t)$. To determine the maximum and minimum values of $\kappa(t)$, we set

$$
\kappa^{\prime}(t)=a^{2} \sin (2 t)-b^{2} \sin (2 t)=0 .
$$

This would imply that either $\gamma^{\prime}(t)=0$, in which case curvature is constant, or $\sin (2 t)=0$, which implies that $t=k \frac{\pi}{2}$, where $k \in \mathbb{Z}$. Further, we have that

$$
\left.\kappa^{\prime \prime}(t)\right|_{\text {at } t=k \frac{\pi}{2}}=2\left(a^{2}-b^{2}\right) \cos (k \pi) .
$$

Assuming WLOG that $a>b$, we see that $\kappa^{\prime \prime}(t)<0$, when $k=2 \ell$, for $\ell \in \mathbb{Z}$, and thus on these values $\kappa(t)$ is maximum. By a similar reasoning, when $k=(2 \ell+1)$, for $\ell \in \mathbb{Z}$, the curvature is minimum.
3. Show that the sphere S^{2} is a regular surface with a parametrization having exactly two coordinate neighborhoods.
Solution. Let $N=(0,0,1)$ and $S=(0,0,-1)$ denote the north and south poles of S^{2}, respectively. The stereographic projections

$$
\begin{aligned}
\pi_{N}: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}:(x, y, z) \stackrel{\pi_{N}}{\longmapsto}\left(\frac{x}{1-z}, \frac{y}{1-z}\right) \\
\text { and } \\
\pi_{S}: S^{2} \backslash\{S\} \rightarrow \mathbb{R}^{2}:(x, y, z) \stackrel{\pi_{S}}{\longmapsto}\left(\frac{x}{1+z}, \frac{y}{1+z}\right)
\end{aligned}
$$

are diffeomorphisms. Thus,

$$
\pi_{N}^{-1}: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{N\} \text { and } \pi_{S}^{-1}: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{S\}
$$

together yield a parametrization of S^{2} with coordinate neighborhoods $S^{2} \backslash\{N\}$ and $S^{2} \backslash\{S\}$.
4. Let $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit-speed curve whose curvature satisfies $0<\kappa(t)<1 / \epsilon$, for all $t \in(a, b)$. Show that $\varphi:(a, b) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$ defined by

$$
\varphi(t, \theta)=\gamma(t)+(\epsilon \cos (\theta)) \eta(t)+(\epsilon \sin (\theta)) b(t)
$$

is a parametrized surface.
Solution. To show that φ is parametrized surface, we need to show φ is a differentiable function, that is, all partial derivatives of φ exist, and are continuous. Thus, we have to show that each partial derivative appearing in Jacobian matrix

$$
\left[\begin{array}{cc}
\gamma^{\prime}(t) & 0 \\
(\epsilon \cos (\theta)) \eta^{\prime}(t) & -(\epsilon \sin (\theta)) \eta(t) \\
(\epsilon \sin (\theta)) b^{\prime}(t) & (\epsilon \cos (\theta)) b(t)
\end{array}\right]
$$

is well-defined and continuous. We know from class that $T(t)=\gamma^{\prime}(t)$, $\eta(t)$ and $b(t)$ are continuous functions. Further, since the torsion $\tau(t)$ is a continuous function (why?), it follows by the Serret-Frenet equations that $b^{\prime}(t)$ and $\eta^{\prime}(t)$ are also continuous functions. Thus, each partial derivative appearing in the Jacobian is well-defined and continuous. Geometrically speaking, φ defines a surface that bounds a tubular neighborhood of γ whose cross-section is a circular disk of radius ϵ.
5. Let S be a regular surface.
(a) Prove that is S is connected, then S is path-connected.
(b) Prove that $U \subset S$ is a regular surface, if, and only if, U is open in S.

Solution. Since S is a regular surface, around each point $p \in S$, there exists a local coordinate neighborhood $V_{p} \cap S \ni p$ parametrized by $f_{p}: U_{p}\left(\subset \mathbb{R}^{2}\right) \rightarrow V_{p} \cap S$.
(a) By the standard topology in \mathbb{R}^{2}, there exists a (path-connected) open ball $B\left(f^{-1}(p), \epsilon_{p}\right) \subset U_{p}$. Since f_{p} is a homeomorphism, $W_{p}=$ $f_{p}\left(B\left(f^{-1}(p), \epsilon_{p}\right)\right)$ is a path-connected coordinate neighborhood of p. Hence S is locally path-connected, and since S is connected, it follows that S is path-connected (as a connected locally path-connected topological space is path-connected).
(b) Suppose that $U \subset S$ is open. Then, at each $p \in U$, there exists a local parametrization given by

$$
\left.f_{p}\right|_{f_{p}^{-1}(U) \cap U_{p}}: f_{p}^{-1}(U) \cap U_{p} \rightarrow U \cap\left(V_{p} \cap S\right) .
$$

Thus U is regular surface.
Conversely, assume that $U \subset S$ is regular surface. Then for each point $p \in U$, there exists local coordinates given by

$$
f_{p}^{\prime}: U_{p}^{\prime}\left(\subset \mathbb{R}^{2}\right) \rightarrow V_{p}^{\prime} \cap U
$$

Since V_{p}^{\prime} is open in U, by the subspace topology, $V_{p}^{\prime}=V_{p}^{\prime \prime} \cap U$, where $V_{p}^{\prime \prime}$ is open in S. Thus, $U=\cup_{p \in U} V_{p}^{\prime \prime} \cap U$, which implies that U is open in S.
6. Determine whether the following pairs of surfaces are diffeomorphic.
(a) $\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}=x^{2}+y^{2}, z>0\right\}$ and $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=\right.$ $1\}$.
(b) $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$ and $\mathbb{R}^{2} \backslash\{(0,0)\}$.

Solution. (a) Denote

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}=x^{2}+y^{2}, z>0\right\} \text { and } A=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\} .
$$

Consider the map

$$
\varphi: C \rightarrow A:(x, y, z) \stackrel{\varphi}{\mapsto}(x / z, y / z, \log (z)) .
$$

Since the three component functions of φ are smooth, it follows φ is a smooth map. Furthermore, we have

$$
\varphi^{-1}: A \rightarrow C:(u, v, w) \stackrel{\varphi^{-1}}{\longrightarrow}\left(e^{w} u, e^{w} v, e^{w}\right),
$$

which is also a smooth map, as its component maps are clearly smooth. Thus, φ is a diffeomorphism, and so C and A are diffeomorphic.
(b) Denote $D=\mathbb{R}^{2} \backslash\{(0,0)\}$. We show that D and $\mathbb{R}^{2} \backslash\{(0,0)\}$ are diffeomorphic, by establishing that D and A are diffeomorphic. Consider the restriction

$$
\left.\pi\right|_{A}: A \rightarrow D:(x, y, z) \stackrel{\phi}{\mapsto}(x, y)
$$

of the projection map $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ onto the $x y$-plane. Clearly, this is a diffeomorphism, whose inverse is given by

$$
\left.\pi\right|_{A} ^{-1}: D \rightarrow A:(u, v) \stackrel{\left.\pi\right|_{A} ^{-1}}{\longrightarrow}\left(u, v,\left(u^{2}+v^{2}\right)^{\frac{1}{2}}\right) .
$$

7. (Bonus) Let γ be a unit-speed plane curve with nowhere-vanishing curvature. The evolute of γ is defined by

$$
\epsilon(s)=\gamma(s)+\frac{n(s)}{\kappa_{ \pm}(s)}
$$

Describe an infinite family of curves that have the same evolute.
Solution. Consider the circle $C_{r}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=r^{2}\right\}$ parametrized by $\gamma(s)=(r \cos (s), r \sin (s)), s \in[0,2 \pi)$. Then, we have

$$
T(s)=(-r \sin (s), r \cos (s)),
$$

and so
$n(s)=(-r \sin (s+\pi / 2), r \cos (s+\pi / 2))=(-r \cos (s),-r \sin (s))=-\gamma(s)$.
Thus, the evolute of the infinite family of concentric circles $\left\{C_{r}: r>0\right\}$ is the degenerate point $(0,0)$.

