
MTH 406 Midterm Solutions

1. (a) Show that a space curve γ is planar if, and only if, γ′·(γ′′×γ′′′) = 0.

(b) Show that the curve γ(t) = (a cos(t), a sin(t), sin(t) + cos(t) + b),
where a, b ∈ R is a plane curve.

Solution. (a) By Lesson Plan 1.5 (iv), we know that a curve is planar
if, and only if, τ = 0. Since

τ =
(γ′ × γ′′) · γ′′′

‖γ̇ × γ̈‖
,

it follows that
τ = 0 ⇐⇒ (γ′ × γ′′) · γ′′′ = 0.

(b) This is left as an exercise, as it follows from a straightforward
computation.

2. Consider the ellipse defined by

γ(t) = (a cos(t), b sin(t)), t ∈ R and a, b > 0.

Where is the curvature of γ maximal and minimal?

Solution. We know from class that curvature is given by κ(t) =
‖γ′′(t)‖. Since

γ′(t) = (a cos(t),−b sin(t)) and γ′′(t) = (−a sin(t),−b cos(t)),

we have κ(t) = a2 sin2(t) + b2 cos2(t). To determine the maximum and
minimum values of κ(t), we set

κ′(t) = a2 sin(2t)− b2 sin(2t) = 0.

This would imply that either γ′(t) = 0, in which case curvature is
constant, or sin(2t) = 0, which implies that t = k π

2
, where k ∈ Z.

Further, we have that

κ′′(t)|at t=k π
2

= 2(a2 − b2) cos(kπ).

Assuming WLOG that a > b, we see that κ′′(t) < 0, when k = 2`,
for ` ∈ Z, and thus on these values κ(t) is maximum. By a similar
reasoning, when k = (2`+ 1), for ` ∈ Z, the curvature is minimum.
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3. Show that the sphere S2 is a regular surface with a parametrization
having exactly two coordinate neighborhoods.

Solution. Let N = (0, 0, 1) and S = (0, 0,−1) denote the north and
south poles of S2, respectively. The stereographic projections

πN : S2 \ {N} → R2 : (x, y, z)
πN7−→

(
x

1− z
,

y

1− z

)
and

πS : S2 \ {S} → R2 : (x, y, z)
πS7−→
(

x

1 + z
,

y

1 + z

)
are diffeomorphisms. Thus,

π−1N : R2 → S2 \ {N} and π−1S : R2 → S2 \ {S}

together yield a parametrization of S2 with coordinate neighborhoods
S2 \ {N} and S2 \ {S}.

4. Let γ : (a, b) → R3 be a unit-speed curve whose curvature satisfies
0 < κ(t) < 1/ε, for all t ∈ (a, b). Show that ϕ : (a, b) × (0, 2π) → R3

defined by

ϕ(t, θ) = γ(t) + (ε cos(θ))η(t) + (ε sin(θ))b(t).

is a parametrized surface.

Solution. To show that ϕ is parametrized surface, we need to show
ϕ is a differentiable function, that is, all partial derivatives of ϕ exist,
and are continuous. Thus, we have to show that each partial derivative
appearing in Jacobian matrix γ′(t) 0

(ε cos(θ))η′(t) −(ε sin(θ))η(t)
(ε sin(θ))b′(t) (ε cos(θ))b(t)


is well-defined and continuous. We know from class that T (t) = γ′(t),
η(t) and b(t) are continuous functions. Further, since the torsion τ(t)
is a continuous function (why?), it follows by the Serret-Frenet equa-
tions that b′(t) and η′(t) are also continuous functions. Thus, each
partial derivative appearing in the Jacobian is well-defined and con-
tinuous. Geometrically speaking, ϕ defines a surface that bounds a
tubular neighborhood of γ whose cross-section is a circular disk of ra-
dius ε.
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5. Let S be a regular surface.

(a) Prove that is S is connected, then S is path-connected.

(b) Prove that U ⊂ S is a regular surface, if, and only if, U is open in
S.

Solution. Since S is a regular surface, around each point p ∈ S, there
exists a local coordinate neighborhood Vp ∩ S 3 p parametrized by
fp : Up(⊂ R2)→ Vp ∩ S.

(a) By the standard topology in R2, there exists a (path-connected)
open ball B(f−1(p), εp) ⊂ Up. Since fp is a homeomorphism, Wp =
fp(B(f−1(p), εp)) is a path-connected coordinate neighborhood of p.
Hence S is locally path-connected, and since S is connected, it fol-
lows that S is path-connected (as a connected locally path-connected
topological space is path-connected).

(b) Suppose that U ⊂ S is open. Then, at each p ∈ U , there exists a
local parametrization given by

fp|f−1
p (U)∩Up : f−1p (U) ∩ Up → U ∩ (Vp ∩ S).

Thus U is regular surface.

Conversely, assume that U ⊂ S is regular surface. Then for each point
p ∈ U , there exists local coordinates given by

f ′p : U ′p(⊂ R2)→ V ′p ∩ U.

Since V ′p is open in U , by the subspace topology, V ′p = V ′′p ∩ U , where
V ′′p is open in S. Thus, U = ∪p∈UV ′′p ∩U , which implies that U is open
in S.

6. Determine whether the following pairs of surfaces are diffeomorphic.

(a) {(x, y, z) ∈ R3 : z2 = x2+y2, z > 0} and {(x, y, z) ∈ R3 : x2+y2 =
1}.

(b) {(x, y, z) ∈ R3 : x2 + y2 = 1} and R2 \ {(0, 0)}.

Solution. (a) Denote

C = {(x, y, z) ∈ R3 : z2 = x2+y2, z > 0} and A = {(x, y, z) ∈ R3 : x2+y2 = 1}.
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Consider the map

ϕ : C → A : (x, y, z)
ϕ7−→ (x/z, y/z, log(z)).

Since the three component functions of ϕ are smooth, it follows ϕ is a
smooth map. Furthermore, we have

ϕ−1 : A→ C : (u, v, w)
ϕ−1

7−−→ (ewu, ewv, ew),

which is also a smooth map, as its component maps are clearly smooth.
Thus, ϕ is a diffeomorphism, and so C and A are diffeomorphic.

(b) Denote D = R2 \ {(0, 0)}. We show that D and R2 \ {(0, 0)}
are diffeomorphic, by establishing that D and A are diffeomorphic.
Consider the restriction

π|A : A→ D : (x, y, z)
φ7−→ (x, y)

of the projection map π : R3 → R2 onto the xy-plane. Clearly, this is
a diffeomorphism, whose inverse is given by

π|−1A : D → A : (u, v)
π|−1
A7−−→ (u, v, (u2 + v2)

1
2 ).

7. (Bonus) Let γ be a unit-speed plane curve with nowhere-vanishing
curvature. The evolute of γ is defined by

ε(s) = γ(s) +
n(s)

κ±(s)
.

Describe an infinite family of curves that have the same evolute.

Solution. Consider the circle Cr = {(x, y) ∈ R2 : x2 + y2 = r2}
parametrized by γ(s) = (r cos(s), r sin(s)), s ∈ [0, 2π). Then, we have

T (s) = (−r sin(s), r cos(s)),

and so

n(s) = (−r sin(s+π/2), r cos(s+π/2)) = (−r cos(s),−r sin(s)) = −γ(s).

Thus, the evolute of the infinite family of concentric circles {Cr : r > 0}
is the degenerate point (0, 0).
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