MTH 406 Midterm Solutions

- 1. (a) Show that a space curve γ is planar if, and only if, $\gamma' \cdot (\gamma'' \times \gamma''') = 0$.
 - (b) Show that the curve $\gamma(t) = (a\cos(t), a\sin(t), \sin(t) + \cos(t) + b)$, where $a, b \in \mathbb{R}$ is a plane curve.

Solution. (a) By Lesson Plan 1.5 (iv), we know that a curve is planar if, and only if, $\tau = 0$. Since

$$\tau = \frac{(\gamma' \times \gamma'') \cdot \gamma'''}{\|\dot{\gamma} \times \ddot{\gamma}\|},$$

it follows that

$$\tau = 0 \iff (\gamma' \times \gamma'') \cdot \gamma''' = 0.$$

(b) This is left as an exercise, as it follows from a straightforward computation.

2. Consider the ellipse defined by

$$\gamma(t) = (a\cos(t), b\sin(t)), t \in \mathbb{R} \text{ and } a, b > 0.$$

Where is the curvature of γ maximal and minimal?

Solution. We know from class that curvature is given by $\kappa(t) = \|\gamma''(t)\|$. Since

$$\gamma'(t) = (a\cos(t), -b\sin(t)) \text{ and } \gamma''(t) = (-a\sin(t), -b\cos(t)),$$

we have $\kappa(t) = a^2 \sin^2(t) + b^2 \cos^2(t)$. To determine the maximum and minimum values of $\kappa(t)$, we set

$$\kappa'(t) = a^2 \sin(2t) - b^2 \sin(2t) = 0.$$

This would imply that either $\gamma'(t) = 0$, in which case curvature is constant, or $\sin(2t) = 0$, which implies that $t = k\frac{\pi}{2}$, where $k \in \mathbb{Z}$. Further, we have that

$$\kappa''(t)|_{\text{at }t=k\frac{\pi}{2}} = 2(a^2 - b^2)\cos(k\pi).$$

Assuming WLOG that a > b, we see that $\kappa''(t) < 0$, when $k = 2\ell$, for $\ell \in \mathbb{Z}$, and thus on these values $\kappa(t)$ is maximum. By a similar reasoning, when $k = (2\ell + 1)$, for $\ell \in \mathbb{Z}$, the curvature is minimum.

3. Show that the sphere S^2 is a regular surface with a parametrization having exactly two coordinate neighborhoods.

Solution. Let N = (0, 0, 1) and S = (0, 0, -1) denote the north and south poles of S^2 , respectively. The stereographic projections

$$\pi_N : S^2 \setminus \{N\} \to \mathbb{R}^2 : (x, y, z) \xrightarrow{\pi_N} \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

and

$$\pi_S: S^2 \setminus \{S\} \to \mathbb{R}^2: (x, y, z) \xrightarrow{\pi_S} \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$$

are diffeomorphisms. Thus,

 $\pi_N^{-1} : \mathbb{R}^2 \to S^2 \setminus \{N\} \text{ and } \pi_S^{-1} : \mathbb{R}^2 \to S^2 \setminus \{S\}$

together yield a parametrization of S^2 with coordinate neighborhoods $S^2 \setminus \{N\}$ and $S^2 \setminus \{S\}$.

4. Let $\gamma : (a, b) \to \mathbb{R}^3$ be a unit-speed curve whose curvature satisfies $0 < \kappa(t) < 1/\epsilon$, for all $t \in (a, b)$. Show that $\varphi : (a, b) \times (0, 2\pi) \to \mathbb{R}^3$ defined by

$$\varphi(t,\theta) = \gamma(t) + (\epsilon \cos(\theta))\eta(t) + (\epsilon \sin(\theta))b(t).$$

is a parametrized surface.

Solution. To show that φ is parametrized surface, we need to show φ is a differentiable function, that is, all partial derivatives of φ exist, and are continuous. Thus, we have to show that each partial derivative appearing in Jacobian matrix

$$\begin{bmatrix} \gamma'(t) & 0\\ (\epsilon \cos(\theta))\eta'(t) & -(\epsilon \sin(\theta))\eta(t)\\ (\epsilon \sin(\theta))b'(t) & (\epsilon \cos(\theta))b(t) \end{bmatrix}$$

is well-defined and continuous. We know from class that $T(t) = \gamma'(t)$, $\eta(t)$ and b(t) are continuous functions. Further, since the torsion $\tau(t)$ is a continuous function (why?), it follows by the Serret-Frenet equations that b'(t) and $\eta'(t)$ are also continuous functions. Thus, each partial derivative appearing in the Jacobian is well-defined and continuous. Geometrically speaking, φ defines a surface that bounds a tubular neighborhood of γ whose cross-section is a circular disk of radius ϵ .

- 5. Let S be a regular surface.
 - (a) Prove that is S is connected, then S is path-connected.
 - (b) Prove that $U \subset S$ is a regular surface, if, and only if, U is open in S.

Solution. Since S is a regular surface, around each point $p \in S$, there exists a local coordinate neighborhood $V_p \cap S \ni p$ parametrized by $f_p: U_p(\subset \mathbb{R}^2) \to V_p \cap S$.

(a) By the standard topology in \mathbb{R}^2 , there exists a (path-connected) open ball $B(f^{-1}(p), \epsilon_p) \subset U_p$. Since f_p is a homeomorphism, $W_p = f_p(B(f^{-1}(p), \epsilon_p))$ is a path-connected coordinate neighborhood of p. Hence S is locally path-connected, and since S is connected, it follows that S is path-connected (as a connected locally path-connected topological space is path-connected).

(b) Suppose that $U \subset S$ is open. Then, at each $p \in U$, there exists a local parametrization given by

$$f_p|_{f_p^{-1}(U)\cap U_p}: f_p^{-1}(U)\cap U_p \to U\cap (V_p\cap S).$$

Thus U is regular surface.

Conversely, assume that $U \subset S$ is regular surface. Then for each point $p \in U$, there exists local coordinates given by

$$f'_p: U'_p(\subset \mathbb{R}^2) \to V'_p \cap U.$$

Since V'_p is open in U, by the subspace topology, $V'_p = V''_p \cap U$, where V''_p is open in S. Thus, $U = \bigcup_{p \in U} V''_p \cap U$, which implies that U is open in S.

- 6. Determine whether the following pairs of surfaces are diffeomorphic.
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2, z > 0\}$ and $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$.
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ and $\mathbb{R}^2 \setminus \{(0, 0)\}.$

Solution. (a) Denote

$$C = \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2, z > 0\} \text{ and } A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$$

Consider the map

$$\varphi: C \to A: (x, y, z) \stackrel{\varphi}{\mapsto} (x/z, y/z, \log(z)).$$

Since the three component functions of φ are smooth, it follows φ is a smooth map. Furthermore, we have

$$\varphi^{-1}: A \to C: (u, v, w) \xrightarrow{\varphi^{-1}} (e^w u, e^w v, e^w),$$

which is also a smooth map, as its component maps are clearly smooth. Thus, φ is a diffeomorphism, and so C and A are diffeomorphic.

(b) Denote $D = \mathbb{R}^2 \setminus \{(0,0)\}$. We show that D and $\mathbb{R}^2 \setminus \{(0,0)\}$ are diffeomorphic, by establishing that D and A are diffeomorphic. Consider the restriction

$$\pi|_A : A \to D : (x, y, z) \stackrel{\phi}{\mapsto} (x, y)$$

of the projection map $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ onto the *xy*-plane. Clearly, this is a diffeomorphism, whose inverse is given by

$$\pi|_{A}^{-1}: D \to A: (u, v) \xrightarrow{\pi|_{A}^{-1}} (u, v, (u^{2} + v^{2})^{\frac{1}{2}}).$$

7. (Bonus) Let γ be a unit-speed plane curve with nowhere-vanishing curvature. The *evolute* of γ is defined by

$$\epsilon(s) = \gamma(s) + \frac{n(s)}{\kappa_{\pm}(s)}$$

Describe an infinite family of curves that have the same evolute.

Solution. Consider the circle $C_r = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$ parametrized by $\gamma(s) = (r \cos(s), r \sin(s)), s \in [0, 2\pi)$. Then, we have

$$T(s) = (-r\sin(s), r\cos(s)),$$

and so

$$n(s) = (-r\sin(s+\pi/2), r\cos(s+\pi/2)) = (-r\cos(s), -r\sin(s)) = -\gamma(s).$$

Thus, the evolute of the infinite family of concentric circles $\{C_r : r > 0\}$ is the degenerate point (0, 0).